Medicinal properties of staghorn sumac Rhus typhina L.
nr katalogowy: 151906
10.15199/2.2024.12.3
Streszczenie
Podziwiając barwy jesieni, szczególnie w parkach i ogrodach, możemy zauważyć niezwykle kolorowe krzewy o charakterystycznym pokroju korony, podzielonych liściach zielonych, żółtych, czerwonych, a także charakterystycznych zielonych lub bordowych kwiatostanach. Ta roślina to sumak octowiec (Fot. 1.). Sumak obok walorów estetycznych posiada wiele substancji biologicznie czynnych mających właściwości lecznicze. Sumak octowiec znany jest również pod nazwą sumak odurzający, czy rogaty. To rodzimy gatunk wschodniej części Ameryki Północnej, gdzie miejscowa ludność, szczególnie w Kanadzie, wykorzystywała nadziemne części tej rośliny do konsumpcji, w medycynie, a także w przemyśle farbiarskim. Ze względu na łatwość rozmnażania, a także rozprzestrzeniania, gatunek ten występuje obecnie na świecie w klimacie umiarkowanym. Jednakże poza terenem jego naturalnego środowiska stał się gatunkiem inwazyjnym, a jego uprawa zakazana. Ze względu na jego walory estetyczne obecnie uprawiany jest jako roślina ozdobna. Pomimo, że powszechnie uznawany jest za roślinę trującą, to w wielu krajach jest cenionym gatunkiem wykorzystywanym w przemyśle farmaceutycznym, spożywczym i kosmetycznym.
Abstract
When admiring the colours of autumn, especially in parks and gardens, we can see extremely colourful shrubs with a characteristic crown habit, divided leaves of green, yellow, red, and distinctive green or burgundy flowers. This plant is the acacia sumac (Photo 1.). In addition to its aesthetic value, sumac has many biologically active substances with medicinal properties. Acetic sumac is also known as intoxicating sumac or horned sumac. It is a native species of eastern North America, where the local population, especially in Canada, used the above-ground parts of the plant for consumption, in medicine and also in the dye industry. Due to its ease of propagation, as well as spread, the species is now found worldwide in temperate climates. However, outside its natural habitat, it has become an invasive species and its cultivation is prohibited. Due to its aesthetic value, it is now cultivated as an ornamental plant. Although it is widely regarded as a poisonous plant, in many countries it is a valued species used in the pharmaceutical, food and cosmetic industries.
Słowa kluczowe / Keywords
Bibliografia
[1] Danielewicz W., Maliński T. 2011. Drzewa i krzewy Ogrodu Dendrologicznego Uniwersytetu Przyrodniczego w Poznaniu. Poznań, Wydawnictwo Uniwersytetu Przyrodniczego w Poznaniu.
[2] Rayne, S., Mazza, G. 2007. Biological activities of extracts from Sumac (Rhus spp.). A review. Plant Foods for Human Nutrition (Formerly Qualitas Plantarum), 62,4: 165–175.
[3] Wang S., Zhu F. 2017. Dietary antioxidant synergy in chemical and biological systems. Critical Reviews in Food Science and Nutrition, 57: 2343–2357.
[4] Wu T., McCallum J. L., Wang S., Liu R., Zhu H., Tsao, R. 2013. Evaluation of antioxidant activities and chemical characterisation of staghorn sumac fruit (Rhus hirta L.). Food Chemistry, 138: 1333–1340.
[5] Gallant J. B., Kemp J. R., Lacroix, C. R. 1998. Floral development of dioecious Staghorn Sumac, Rhus hirta (Anacardiaceae). International Journal of Plant Sciences, 159, 4: 539–549.
[6] Fazeli M. R., Amin G., Attari M. M. A., Ashtiani H., Jamalifar H., Samadi, N. 2007. Antimicrobial activities of Iranian sumac and avishan-e shirazi (Zataria multiflora) against some food-borne bacteria. Food Control, 18, 6: 646–649.
[7] Kossah R., Nsabimana C., Zhao J., Chen H., Tian F., Zhang H., Chem W. 2009. Comparative study on the chemical composition of Syrian Sumac (Rhus coriaria L.) and Chinese Sumac (Rhus typhina L.) fruits. Pakistan Journal of Nutrition, 8: 1570–1575.
[8] Bogaciński B., Molski B. 1969. Budowa owoców sumaka octowca Rhus typhina L., Tauron./ The structure of sumah (Rhus typhina L., Tauron) fruits. Sylwan, 6: 67-76.
[9] Liu T., Li Z., Li R., Cui Y., Zhao Y., Yu Z. 2019. Composition analysis and antioxidant activities of the Rhus typhina L. stem. Journal of Pharmaceutical Analysis, 9, 5: 332-338. https://doi. org/10.1016/j.jpha.2019.01.002
[10] Cho N., Lee K.Y., Huh J., Choi J.H., Yang H., Jeong E. J., Kim H.P., Sung S.H. 2013. Cognitive- -enhancing effects of Rhus verniciflua bark extract and its active flavonoids with neuroprotective and anti-in-flammatory activities. FoodChem.Toxicol. 58: 355–361.
[11] Kim K.H., Moon E., Choi S.U., Eunjung M., Kim S. Y., Lee K.R. 2013. Polyphenols from the bark of Rhus verniciflua and their biological evaluation on antitumor and anti-inflammatory activities, Phytochemistry, 92: 113–121.
[12] Canas S., Casanova V., Belchior A.P. 2008. Antioxidant activity and phenolic content of Portuguese winea gedbrandies. J. Food Compos. Anal. 21: 626–633.
[13] Zheng G. M., Xu L. X., Wu P., Xie H. H., Jiang Y. M., Chen F., Wei X. Y. 2009. Polyphenols from longan seeds and their radical-scavenging activity. Food Chemistry, 116: 433–436. https://doi. org/10.1016/j.foodchem.2009.02.059
[14] McCune L. M., Johns T. 2002. Antioxidant activity in medicinal plants associated with the symptoms of diabetes mellitus used by the indigenous peoples of the North American boreal forest. Journal of Ethnopharmacology, 82, 2–3: 197–205.
[15] Kossah R., Zhang H., Chen W. 2011. Antimicrobial and antioxidant activities of Chinese sumac (Rhus typhina L.) fruit extract. Food Control, 22: 128–132.
[16] Olchowik E., Lotkowski K., Mavlyanov S., Abdullajanova N., Ionov M., Bryszewska M., Zamaraeva M. 2012. Stabilization of erythrocytes against oxidative and hypotonic stress by tannins isolated from sumac leaves (Rhus typhina L.) and grape seeds (Vitis vinifera L.). Cellular & Molecular Biology Letters, 17: 333–348.
[17] Olchowik-Grabarek E., Mavlyanov S., Abdullajanova N., Gieniusz R., Zamaraeva M. 2017. Specificity of hydrolysable tannins from Rhus typhina L. to oxidants in cell and cell-free models. Applied Biochemistry and Biotechnology,181: 495–510.
[18] Vandal J., Abou-Zaid M. M., Ferroni G., Leduc L. G. 2015. Antimicrobial activity of natural products from the flora of Northern Ontario, Canada. Pharmaceutical Biology, 53: 800–806.
[19] Peng Y., Zhang H., Lou R., Mine Y., McCallum J., Kirby C., Tsao R. 2016. Antioxidant and anti- -inflammatory activities of pyranoanthocyanins and other polyphenols from staghorn sumac (Rhus hirta L.) in Caco-2 cell models. Journal of Functional Foods, 20: 139–147.
[20] Borchardt J. R., Wyse D. L., Sheaffer C. C., Kauppi K. L., Fulcher R. G., Ehlke N. L., Biesboer D. D., Bey R. F. 2008. Antioxidant and antimicrobial activity of seed from plants of the Mississippi river basin. Journal of Medicinal Plant Research, 2: 81–93.
[21] El Hasasna H., Saleh A., Al Samri H., Athamneh K., Attoub S., Arafat K., Benhalilou N., Alyan S., Viallet J., Al Dhaheri Y., Eid A., Iratni R. 2016. Rhus coriaria suppresses angiogenesis, metastasis and tumour growth of breast cancer through inhibition of STAT3, NFκB and nitric oxide pathways. Sci Rep.18, 6: 21144. doi: 10.1038/srep21144.
[22] Abdallah S., Abu-Reidah I., Mousa A., Abdel-Latif T. 2019. Rhus coriaria (sumac) extract reduces migration capacity of uterus cervix cancer cells, Revista Brasileira de Farmacognosia, 29, 5: 591-596. https://doi.org/10.1016/j.bjp.2019.06.004
[23] Athamneh K., Hasasna H.E., Samri H.A., Attoub S., Arafat K., Benhalilou N., Al Rashedi A., Al Dhaheri Y., AbuQamar S., Eid A., Iratniet R 2017. Rhus coriaria increases protein ubiquitination, proteasomal degradation and triggers non-canonical Beclin-1-independent autophagy and apoptotic cell death in colon cancer cells. Sci Rep 7: 11633. https://doi.org/10.1038/s41598- 017-11202-3
[24] Wang S., Meckling K. A., Marcone M. F., Kakuda Y., Tsao, R. 2011. Synergistic, additive, and antagonistic effects of food mixtures on total antioxidant capacities. Journal of Agricultural and Food Chemistry, 59, 3, 960–968.
[25] Katiki L. M., Ferreira J. F. S., Gonzalez J. M., Zajac A. M., Lindsay D. S., Chagas A. C. S., Amarante A. F. T. 2013. Anthelmintic effect of plant extracts containing condensed and hydrolysable tannins on Caenorhabditis elegans, and their antioxidant capacity. Veterinary Parasitology, 192: 218–227.
[26] Chung K.-T., Lu Z., Chou M. W. 1998. Mechanism of inhibition of tannic acid and related compounds on the growth of intestinal bacteria. Food and Chemical Toxicology, 36: 1053–1060.
[27] Sekowski S., Naziris N., Chountoulesi M., Olchowik-Grabarek E., Czerkas K., Veiko A., Abdulladjanova N., Demetzos C., Zamaraeva M. 2023. Interaction of Rhus typhina Tannin with Lipid Nanoparticles: Implication for the Formulation of a Tannin-Liposome Hybrid Biomaterial with Antibacterial Activity. J Funct Biomater. 14, 6: 296. doi: 10.3390/jfb14060296.